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The DoE will invest significant resources to bring exascale computing on line. Exascale 
computing will likely employ hierarchical, heterogeneous computing architectures, featuring 
multiple levels of parallelism, each delivered by different architectural solutions. It is paramount 
for DOE that this hardware is utilized to its fullest extent. Achieving high utilization levels will 
require the development of a new generation of computational solver algorithms. The most 
successful of these new algorithms will simultaneously 1) embrace emerging architecture 
characteristics so as to optimally utilize the compute capability and do so in a resilient fashion, 
and 2) ensure that a demonstrable advancement in predictive simulation capability is achieved in 
key application areas of importance to DoE and the nation. This position paper argues for further 
development of moment-based scale-bridging algorithms which not only adapt, but in fact 
embrace, the types of heterogeneous architectures that will underpin upcoming exascale 
computers. 
 
The thesis of this position paper is that, for an algorithm to exploit hierarchical exascale 
computing successfully, it must become hierarchical itself. A hierarchical algorithm is one that 
can exploit different levels of physical description by mapping them to corresponding levels in 
the computing hierarchy. In doing so, each level of parallelism deals with the physical 
description level best suited to its architectural specifications.  Kinetic transport systems 
(Boltzmann-like models) feature a natural hierarchical formulation based on moments. Moments 
are rigorously obtained by weighed integration of the distribution function over velocity, energy, 
and/or other parameters describing phase space.  Thus, moments are functions of configuration 
space only. Governing equations for the moments can be obtained by successive integration of 
the kinetic transport equation. Moment equations, however, require closures for well-posedness.  
It is important to understand that moment equations involve no physical approximations when 
closed self-consistently with the kinetic model. 
 
The target applications for this evolving algorithmic approach are multiphysics kinetic systems.  
Multiphysics kinetic systems are systems that 1) consider a variety of physical models that are 
interacting in a strong nonlinear fashion, and 2) at least one of the required physical components 
demands a kinetic treatment for physical fidelity, with the solution of a corresponding transport 
equation in a multiple dimensional phase space (e.g., three spatial dimensions plus additional 
dimensions describing velocity or energy space). The potential application space modeled by 
multiphysics kinetic systems is very large, including a variety of plasmas (space weather, 
magnetic fusion), high-energy-density physics and ICF applications, engineering combustion 
systems, climate and weather systems, multiphysics nuclear reactor simulation, materials science 
and  many others. In all these problems, it is the need for a phase-space representation of kinetic 
physics components which dominates the computational effort (>80-90%). In the vast majority 
of such systems, the kinetic components are currently approximated in some fashion to make 
system-scale simulations tractable.  Such approximations are  frequently the weak link in 
increased predictive simulation. This position paper argues for a novel algorithmic approach that 
builds upon an evolving foundation to move past such approximations (to achieve physics 
fidelity) while simultaneously embracing emerging exascale computer architectures. This is a 
classic “win-win” situation, which will ensure the advancement of predictive simulation 
capability while effectively utilizing exascale computer architectures.  Our research team has 



already demonstrated a proof of principle of such a “win-win”. 
 
We use the phrase “high-order” (HO) to describe the kinetic transport system, and “low order” 
(LO) to describe the consistent moment system. Moment-based scale-bridging algorithms utilize 
a hierarchical kinetic formulation that features LO and HO descriptions collocated everywhere in 
the domain. Both descriptions are coupled via closures and fields.  The original purpose of 
considering the LO description [1-3] was as a means for algorithmic acceleration via time-scale 
segregation (akin to a multigrid approach), which in turn enabled one to address stiff time scales 
at the LO component level (which is far more amenable to physics-based preconditioning [4-10] 
than the HO component). The foundations of algorithmic moment-based scale-bridging ideas 
reside in statistical mechanics, kinetic theory, and transport theory. These ideas have matured in 
steady-state neutron transport for nuclear reactors [11-14]. The extension from neutron transport 
to kinetic plasma simulation is natural with the inclusion Maxwell’s equations.  Early related 
ideas can be found in [2-3], and our recent advances are presented in [15-19].  We have also 
made significant recent advances in applying these ideas to thermal radiation transport [20-22]. 
 
Solver-wise, HO-LO consistency and the strict preservation of conservation laws (which 
determine long-term accuracy) demand tight nonlinear coupling. This, in turn, will provide some 
important benefits such as robustness, numerical stability, and superior accuracy. However, tight 
coupling requires practical, scalable nonlinear solution strategies, which overcome key obstacles 
such as onerous memory requirements. Significant progress towards the practicality of fully 
nonlinear approaches for kinetic multiphysics systems has recently been made.  We currently 
have two related, yet somewhat distinct approaches.  One is based on a standard Picard iteration 
between the HO and LO problems [1,11,13,17], and could be easily adapted to use Anderson 
acceleration techniques [23].  A different approach is to solve the HO problem directly with 
JFNK through the use of kinetic enslavement (or nonlinear elimination) [12,15].  Here one can 
use the LO problem as the preconditioner and achieve significant acceleration [12,18]. 
 
With the push towards exascale, the hierarchical nature of the HO-LO approach possesses 
another important advantage: an efficient mapping of the algorithm to heterogeneous computer 
architectures. In particular, LO (moment) equations are low-dimensional, and hence memory 
friendly. They are best suited for the highest level of parallelism. The HO (kinetic) description is 
high-dimensional and very compute intensive, and hence very suitable to lower (less reliable) 
levels of parallelism. Some key advantages of HO-LO formulations for exascale computing are: 
Minimization of data movement: the HO component can be completely contained at the 
appropriate level of the architecture (the hardware accelerator). Particles “live” in the accelerator 
(or isolated on nodes), and are never communicated elsewhere. Only (low dimensional) moments 
and fields are communicated up and down the architecture hierarchy. Resiliency: The redundant 
nature of the HO-LO approach provides a first firewall against soft and hard hardware failures.  
Compute-intensive HO descriptions, which will live in the less reliable architectures, may be 
best served with a Lagrangian description based on particles, which is naturally resilient against 
soft failures [24]. Mixed precision: HO computations can be done in single precision to 
minimize memory storage and maximize computational efficiency, while LO evolution can be 
done in double precision [16]. Asynchrony: a nonlinearly enslaved HO-LO description allows 
one to exploit it at a very coarse algorithmic level because all HO descriptions can be enslaved to 
the same LO formulation. Thus, several HO models representing different coupled physics do 
not interact with one another, and therefore can be integrated concurrently.  
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